منابع مشابه
Local Sine and Cosine Bases
19 and = 1 + 1 m ; m a positive integer. If we let w(x) 1 p 2 R 1 ?1 e ixx ()dd, then w is a \mother function" that generates a wavelet basis (giving us a Multi Resolution Analysis) m ; m a positive integer. x6. Concluding remarks. We repeat that the local bases we developed in x2. were introduced by Coifman and Meyer, and their use in obtaining the smooth wavelet bases were pointed out to us b...
متن کاملFractional Cosine and Sine Transforms
The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing – are introduced and their main properties and possible applications are discussed.
متن کاملThe discrete fractional cosine and sine transforms
This paper is concerned with the definitions of the discrete fractional cosine transform (DFRCT) and the discrete fractional sine transform (DFRST). The definitions of DFRCT and DFRST are based on the eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete fractional Fourier transform (DFRFT); the eigenvalue and eigenvector relationships between the DFRCT, DFRS...
متن کاملFractional cosine, sine, and Hartley transforms
In previous papers, the Fourier transform (FT) has been generalized into the fractional Fourier transform (FRFT), the linear canonical transform (LCT), and the simplified fractional Fourier transform (SFRFT). Because the cosine, sine, and Hartley transforms are very similar to the FT, it is reasonable to think they can also be generalized by the similar way. In this paper, we will introduce sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Acoustical Society of America
سال: 1968
ISSN: 0001-4966
DOI: 10.1121/1.1970702